

Marcos José Rei Villela

Análise do Comportamento da Temperatura em Sistemas de Produção de Petróleo: Comparação entre Completação Seca e Molhada

Dissertação de Mestrado

Dissertação apresentada como requisito parcial para obtenção do título de Mestre pelo Programa de Pós-Graduação em Engenharia Mecânica da PUC-Rio.

> Orientadores: Marcos Sebastião P. Gomes Iberê Nascentes Alves

Rio de Janeiro, dezembro de 2004

Marcos José Rei Villela

Análise do Comportamento da Temperatura em Sistemas de Produção de Petróleo: Comparação entre Completação Seca e Molhada

Dissertação apresentada como requisito parcial para obtenção do título de Mestre pelo Programa de Pós-Graduação em Engenharia Mecânica da PUC-Rio. Aprovada pela Comissão Examinadora abaixo assinada.

> Marcos Sebastião P. Gomes Orientador Pontifícia Universidade Católica do Rio de Janeiro

> > Iberê Nascentes Alves Co-Orientador Petrobras

Mônica Feijó Naccache Pontifícia Universidade Católica do Rio de Janeiro

> Jacques Braile Saliés Petrobras

José Eugenio Leal

Coordenador Setorial do Centro Técnico Científico - PUC-Rio

Rio de Janeiro, 21 de dezembro de 2004

Todos os direitos reservados. É proibida a reprodução total ou parcial do trabalho sem autorização da universidade, do autor e do orientador.

Marcos José Rei Villela

Graduou-se em Engenharia Mecânica na Universidade Santa Úrsula em 1982. Pós-Graduou-se em Administração de Empresas (MBA Executivo) na COPPEAD/UFRJ em 1999 e em Engenharia de Petróleo na CCE/PUC-Rio em 2000. Atuou em diversos segmentos da área de Exploração e Produção de Petróleo, com foco principal em atividades de Engenharia e Construção para o desenvolvimento de campos de petróleo, no Brasil e no exterior. Atualmente, é responsável pelo desenvolvimento comercial de Produtos e Tecnologias voltados à produção de petróleo offshore (Plataformas e Equipamentos Submarinos).

Ficha Catalográfica

Villela, Marcos José Rei

Análise do comportamento da temperatura em sistemas de produção de petróleo : comparação entre completação seca e molhada / Marcos José Rei Villela ; orientadores: Marcos Sebastião P. Gomes, Iberê Nascentes Alves. Rio de Janeiro : PUC, Departamento de Engenharia Mecânica, 2004.

152 f. : il. ; 30 cm

Dissertação (mestrado) – Pontifícia Universidade Católica do Rio de Janeiro, Departamento de Engenharia Mecânica.

Inclui referências bibliográficas.

1. Engenharia mecânica – Teses. 2. Completação seca. 3. Completação molhada. 4. Completação submarina. 5. Fluxo multifásico. 6. Garantia de escoamento. 7. Produção de petróleo. I. Gomes, Marcos Sebastião P. II. Alves, Iberê Nascentes. III. Pontifícia Universidade Católica do Rio de Janeiro. Departamento de Engenharia Mecânica. IV. Título.

CDD: 621

Dedico este trabalho à minha querida esposa Flávia e ao meu filho Felipe, pelo apoio e a compreensão que nunca faltaram, apesar dos inúmeros momentos em que estive ausente.

Agradecimentos

Aos meus orientadores Prof. Marcos Sebastião P. Gomes e Prof. Iberê Nascentes Alves, pela amizade, apoio e balizamento, que sempre me dedicaram.

Aos amigos Dr. Luis Alberto S. Rocha e Dr. Jacques Braile Saliés, pelo grande incentivo e contribuição na realização deste trabalho.

Aos amigos Prof. Arthur Martins Braga e Prof. Márcio da Silveira Carvalho, pelo inestimável apoio concedido.

À PETROBRAS-CENPES, pela concessão de uma licença do seu software para simulação de escoamento multifásico "MARLIM", ferramenta fundamental para o desenvolvimento deste trabalho.

Aos professores e funcionários do Departamento de Engenharia Mecânica da PUC-Rio, pela cordialidade e dedicação sempre presentes.

Aos amigos Eng^o Elton Jorge Bragança Ribeiro e Eng^a Renata Andrade, pelas dicas durante a elaboração do trabalho.

Resumo

Villela, Marcos José Rei. Análise do Comportamento da Temperatura em Sistemas de Produção de Petróleo: Comparação entre Completação Seca e Molhada. Rio de Janeiro, 2004. 152p. Dissertação de Mestrado - Departamento de Engenharia Mecânica, Pontifícia Universidade Católica do Rio de Janeiro.

Cerca de 50% das reservas brasileiras de hidrocarbonetos estão localizadas na plataforma continental em lâminas de água superiores a mil metros. As temperaturas congelantes do fundo do mar tornam os problemas inerentes ao escoamento da produção de petróleo, ainda mais críticos. Entretanto, os desafios da garantia de escoamento, não são os únicos obstáculos para a produção de petróleo em águas ultra-profundas. Além dos aspectos relacionados à geologia e fatores econômicos, a decisão de desenvolvimento de um campo de petróleo no mar, adotando completação submarina ou seca, precisa ser respaldada por uma análise criteriosa dos problemas relacionados com a garantia de escoamento, principalmente em locações de águas profundas e ultra-profundas. Nestes cenários, a maior variação da energia potencial e consequente intensificação do efeito Joule-Thomson, contribuem de uma forma bem mais significativa para a queda de temperatura e pressão. Este trabalho objetiva promover a comparação entre um sistema de produção usando poços direcionais de grande afastamento, produzindo para uma unidade de completação seca e um sistema adotando poços com completação submarina, a 850, 1.550 e 2.300m de lâmina de água, avaliando os efeitos das perdas de carga e calor em um fluxo multifásico. Com o uso de completação molhada, é avaliada a máxima distância viável entre a zona produtora e a plataforma de produção, de forma a permitir o fluxo de hidrocarbonetos sem formação de cristais de parafina. Com base nos resultados alcançados, podemos tirar algumas conclusões importantes quanto à tendência dos sistemas de produção em águas profundas e ultra-profundas, que nortearão no futuro próximo o desenvolvimento de campos de petróleo na plataforma continental brasileira.

Palavras-chave

Completação seca; completação molhada; completação submarina; fluxo multifásico; garantia de escoamento; produção de petróleo.

Abstract

Villela, Marcos José Rei. **Temperature Behavior Analysis of Oil Production Systems: Dry and Wet Completion Comparison.** Rio de Janeiro, 2004. 152p. Dissertation of Master's degree - Department of Mechanical Engineering, Pontificia Universidade Católica do Rio de Janeiro.

Around 50% of the Brazilian reserves of hydrocarbons are located in the continental platform in water depths with more than one thousand meters. The freezing temperatures of the sea bottom make problems related to oil production, even more critical. However, the flow assurance challenges are not the only obstacles for the oil production in ultra-deep waters. Besides the aspects related to the geology and economical factors, the decision of development of an offshore oil field adopting a system with wet completion or with dry completion, needs to be supported by discerning analyses of the problems related to flow assurance aspects, mainly in deep and ultra-deep water locations. In these scenarios, a larger variation of the potential energy and consequent intensification of the Joule-Thomson effect, contribute in a much more significant way to the temperature and pressure drops. This work aims to promote the comparison between an oil production system using extended reach wells with a dry completion unit and another system with wet completion, at 850, 1.550 and 2.300m of water depth, evaluating the effects of pressure drop and heat loss in a multiphase flow. Using wet completion, it is evaluated the maximum feasible distances between the producing zone of the formation and the floating production unit, allowing the flow of hydrocarbons without interruption by the formation of paraffin crystals. Based on the reached results, we can reach some important conclusions regarding trend of production systems in deep and ultra-deep water, that will guide the development of oil fields in the near future in the Brazilian continental platform.

Keywords

Dry completion; wet completion; subsea completion; multiphase flow; flow assurance; oil production.

Sumário

1 Introdução	19
1.1. História do Petróleo "Offshore" no Brasil	19
1.2. Produção Brasileira de Petróleo	20
1.3. Objetivo e Escopo	23
1.4. Organização do Texto	24
2 Sistemas de Produção em Águas Profundas	26
2.1. Tipos de Completação (quanto ao posicionamento da cabeça do poço)	26
2.1.1. Completação Seca	28
2.1.2. Completação Molhada	28
2.2. Árvore de Natal	29
2.3. Tubulações do Sistema de Produção	30
2.3.1. Coluna de Produção	30
2.3.2. Dutos de Produção	30
2.4. Tipos de Poços	35
2.4.1. Poços Horizontais	35
2.4.2. Poços Tipo 1	36
2.4.3. Poços Tipo 2	36
2.4.4. Poços Tipo 3	37
2.4.5. Poços Tipo ERW (Extended Reach Well)	37
3 Fundamentos do Comportamento dos Hidrocarbonetos Fluidos	38
3.1. Reservatórios de Petróleo	38
3.2. Conceito Básico de Fases	38
3.3. Diagrama de Fases	39
3.4. Tipos de Reservatórios	40
3.4.1. Reservatório de Óleo Tipo "Black-oil"	40
3.4.2. Reservatório de Óleo Volátil	41
3.4.3. Reservatório de Gás Retrógrado	41
3.4.4. Reservatório de Gás Seco	41
3.4.5. Reservatório de Gás Úmido	42
3.5. Propriedades dos Fluidos	42

3.5.1. Definições Básicas	43
4 Fundamentos da Produção de Hidrocarbonetos	46
4.1. Introdução	46
4.2. Fluxo no Meio Poroso	46
4.3. Fluxo na Coluna de Produção	48
5 Fundamentos do Escoamento Multifásico	51
5.1. Definições Básicas	51
5.2. Procedimento de Cálculo de Perda de Carga no Escoamento Bifásico	53
5.3. Propriedades dos Fluidos no Escoamento Bifásico	54
5.3.1. Correlações – "Black Oil"	54
5.3.1.1. Razão de Solubilidade (R _s)	55
5.3.1.2. Fator Volume de Formação (B_0) – Correlação de Standing [6]	57
5.3.1.3. Densidade Relativa do Gás Dissolvido (d_{Gd}) – Correlação de Katz	57
5.3.1.4. Viscosidade do Óleo Saturado ($\mu_{\text{OS}})$ – Correlação de Beggs &	
Robinson	58
5.3.1.5. Viscosidade do Gás (μ_G)	58
5.3.1.6. Pressão e Temperatura Pseudo-crítica (P _{pc} , T _{pc})	59
5.3.1.7. Fator de Compressibilidade (Z)	59
5.3.1.8. Tensão Superficial - líquido e gás (σ_{o})	60
5.3.2. Velocidades e Relações do Escoamento Bifásico	61
5.3.3. Métodos de Determinação das Propriedades da Mistura Líquida	63
5.3.4. Escoamento Vertical Multifásico	63
5.3.4.1. Correlações do F.V.M	63
5.3.4.2. Padrões de Escoamento	65
5.4. Equação do Gradiente de Pressão para Fluxo Bifásico	66
5.4.1. Equações para Determinação do Fator de Fricção	68
5.4.2. Correlação tipo II – Hagedorn & Brown	68
5.4.3. Correlação tipo III – Beggs & Brill	71
5.5. Transferência de Calor no Escoamento de Petróleo	76
6 Simulador Multifásico "Marlim"	79
7 Metodologia da Pesquisa	82
7.1. Descrição	82
7.2. Cenário de Aplicação	83

7.2.1. Características da Arquitetura do Sistema	84
7.2.2. Características do Fluido Produzido	87
7.2.3. Características do Reservatório	88
7.3. Desenvolvimento das Simulações	88
8 Simulação e Análise dos Resultados	90
8.1. Simulação dos Sistemas de Produção em 850 m de Lâmina de Água	90
8.1.1. Sistema com Completação Seca	90
8.1.2. Sistema com Completação Molhada	96
8.2. Simulação dos Sistemas de Produção em 1550 m de Lâmina de Água	102
8.2.1. Sistema com Completação Seca	103
8.2.2. Sistema com Completação Molhada	106
8.3. Simulação dos Sistemas de Produção em 2300 m de Lâmina de Água	113
8.3.1. Sistema com Completação Seca	113
8.3.2. Sistema com Completação Molhada	117
9 Conclusões e Sugestões	123
9.1. Conclusões	123
9.2. Sugestões para Extensão do Trabalho	129
10 Referências Bibliográfica	130
Apéndice A Unidades Estacionárias de Produção (UEP)	131
Anândice B Eundamentos da Perfuração Direcional	130
Apondiou di undamentos da riendração Directorial	109
Apêndice C Glossário	151
•	

Lista de figuras

Figura 1- Produção de Óleo da Petrobras x Demanda Nacional; fonte: Petrobras	21
Figura 2- Perfil de crescimento das reservas provadas; fonte: Petrobras	22
Figura 3- Perfil de produção e reservas provadas; fonte: Petrobras	22
Figura 4- Arranjo esquemático de sistemas de produção (completação seca e	
molhada)	27
Figura 5- Componentes de um sistema de produção com árvore de natal na	
superficie (completação seca)	28
Figura 6- Completação submarina (molhada)	29
Figura 7- Árvore de natal molhada (ANM)	29
Figura 8- Riser com configuração vertical, fonte: Dril-Quip	32
Figura 9- Riser com configuração em catenária	33
Figura 10- Riser com configuração complexa- "Lazy S"	33
Figura 11- Tubulação rígida com revestimento	34
Figura 12- Riser flexível	34
Figura 13- Poço direcional horizontal	35
Figura 14- Poço direcional Tipo 1	36
Figura 15- Poço direcional Tipo 2	36
Figura 16- Poço direcional Tipo 3	37
Figura 17- ERW - Extended Reach Well	37
Figura 18- Diagrama de Fases – Pressão versus Temperatura, fonte: [4]	40
Figura 19- Curva IPR, fonte: [2]	47
Figura 20- Curva disponível da unidade produtiva, fonte [2]	48
Figura 21- Curva requerida do sistema, fonte: [2]	49
Figura 22- Condições de equilíbrio, fonte: [2]	50
Figura 23- Padrões de fluxo observados em oleodutos horizontais, fonte: [6]	52
Figura 24- Fator de compressibilidade para gases naturais, fonte: [13]	60
Figura 25- Padrões de fluxo encontrados em escoamento vertical bifásico, fonte: [6]	65
Figura 26- Fator Ψ para correção do 'holdup" - Hagedorn&Brown, fonte: [2]	70
Figura 27- Coeficiente C para correção do N_L - Hagedorn&Brown, fonte: [2]	70
Figura 28- Correlação para determinação do Holdup - Hagedorn&Brown	71
Figura 29- Regimes de escoamento	72
Figura 30- Mapa de regime de escoamento segundo Beggs & Brill, fonte: [6]	73
Figura 31- "Holdup" versus inclinação do tubo, fonte: [6]	75

Figura 32- Fator de fricção, fonte: [6]	76
Figura 33- Perfil de temperatura da água do mar na Bacia de Campos	84
Figura 34- Perfil dos poços de grande afastamento (ERW)	85
Figura 35- Perfil dos poços horizontais (completação submarina)	86
Figura 36- Arranjo esquemático do sistema de produção utilizado nas simulações	89
Figura 37- Condições de equilíbrio com completação seca – 850m	92
Figura 38- Curva de gradiente dinâmico de pressão na coluna de produção, com	
completação seca – 850m	92
Figura 39- Curva de gradiente de temperatura na coluna de produção, com	
completação seca – 850m	93
Figura 40- Condições de equilíbrio com completação molhada – 850m	99
Figura 41- Curva de gradiente dinâmico de pressão na coluna de produção, com	
completação molhada – 850m	100
Figura 42- Curva de gradiente de temperatura na coluna de produção, com	
completação molhada – 850m	101
Figura 43- Condições de equilíbrio com completação seca – 1550m	104
Figura 44- Curva de gradiente dinâmico de pressão na coluna de produção, com	
completação seca – 1550m	104
Figura 45- Curva de gradiente de temperatura na coluna de produção, com	
completação seca – 1550m	105
Figura 46- Condições de equilíbrio com completação molhada – 1550m	110
Figura 47- Curva de gradiente dinâmico de pressão na coluna de produção, com	
completação molhada – 1550m	110
Figura 48- Curva de gradiente de temperatura na coluna de produção, com	
completação molhada – 1550m	111
Figura 49- Condições de equilíbrio com completação seca – 2300m	114
Figura 50- Curva de gradiente dinâmico de pressão na coluna de produção, com	
completação seca – 2300m	115
Figura 51- Curva de gradiente de temperatura na coluna de produção, com	
completação seca – 2300m	116
Figura 52- Condições de equilíbrio com completação molhada – 2300m	119
Figura 53- Curva de gradiente dinâmico de pressão na coluna de produção, com	
completação molhada – 2300m	120
Figura 54- Curva de gradiente de temperatura na coluna de produção, com	
completação molhada – 2300m	120
Figura 55- Vazões obtidas nos diversos cenários	126

Figura 56- Temperaturas obtidas nos diversos cenários (ao nível da plataforma)	127
Figura 57- Vazão versus afastamento nos diversos cenários	128
Figura 58- Tipos comuns de Unidades Estacionárias de Produção (UEP)	131
Figura 59- Semi-submersível (SS)	132
Figura 60- Desenho esquemático de sistemas de ancoragem	133
Figura 61- Arranjo geral de um FPSO com "Turret"	134
Figura 62- FPSO com sistema de ancoragem tipo "DICAS"	135
Figura 63- FPDSO TECHNIP DPS-2000	136
Figura 64- Truss SPAR (TECHNIP)	137
Figura 65- Tention Leg Platform (TLP)	138
Figura 66- Classificação do raio da seção do poço onde ocorre o ganho de ângulo,	
fonte [3]	140
Figura 67- Trechos de uma trajetória de perfuração direcional, fonte [3]	141
Figura 68- Duas trajetórias de poços direcionais que alcançam o mesmo objetivo	143
Figura 69- Gradientes de pressão de poros e fratura típicos diferentes PDA	145
Figura 70- Tensões in situ – poços verticais, fonte [3]	146
Figura 71- Tensões "in situ" – poços horizontais, fonte [3]	147
Figura 72- Falha por colapso, fonte [3]	148
Figura 73- Falha por tração ou fraturamento hidráulico, fonte [3]	148
Figura 74- Exemplo de composições de fundo ou BHA (Bottom Hole Assembly),	
fonte [3]	149

Lista de tabelas

Tabela 1- Propriedades e correlações "black oil", fonte: [2]	55
Tabela 2- Constantes para determinação de "holdup"	74
Tabela 3- Constantes para aplicação na equação (69)	74
Tabela 4- Geometria dos sistemas de produção com completação seca	85
Tabela 5- Geometria dos sistemas de produção com completação submarina	86
Tabela 6 - Características dos fluidos produzidos.	87
Tabela 7 - Características do reservatório	88
Tabela 8 – Configuração do sistema de produção com completação seca - 850 m	91
Tabela 9- Perfil de pressão em condições de fluxo, com completação seca – 850m	93
Tabela 10 – Variação da temperatura ao longo do sistema de produção – 850m	94
Tabela 11 – Variação da temperatura diante da alteração de características físicas do	
sistema de produção – 850m	95
Tabela 12 - Fatores causadores da variação da temperatura durante o fluxo em	
regime permanente – 850m	95
Tabela 13 – Configuração do sistema de produção com completação molhada –	
850m	97
Tabela 14- Perfil de pressão em condições de fluxo, com completação molhada -	
850m	97
Tabela 15 – Configuração do sistema de produção com completação molhada e	
máximo afastamento – 850m	98
Tabela 16- Perfil de pressão em condições de fluxo, com completação molhada e	
máximo afastamento – 850m	99
Tabela 17 – Variação da temperatura ao longo do sistema de produção – 850m	101
Tabela 18 – Comparação da variação da temperatura ao longo do sistema - 850m	102
Tabela 19 – Comparação das temperaturas e volumes de produção na plataforma –	
850m	102
Tabela 20 – Configuração do sistema de produção com completação seca – 1500m	103
Tabela 21- Perfil de pressão em condições de fluxo, com completação seca – 1550m	105
Tabela 22 – Variação da temperatura ao longo do sistema de produção – 1550m	106
Tabela 23 – Configuração do sistema de produção com completação molhada –	
1550m	107
Tabela 24- Perfil de pressão em condições de fluxo, com completação molhada -	
1550m	108

Tabela 25 – Configuração do sistema de produção com completação molhada e	
máximo afastamento – 1550m	109
Tabela 26- Perfil de pressão em condições de fluxo, com completação molhada e	
máximo afastamento – 1550m	109
Tabela 27 – Variação da temperatura ao longo do sistema de produção – 1550m	111
Tabela 28 – Comparação da variação da temperatura ao longo do sistema - 1550m	112
Tabela 29 – Comparação das temperaturas e volumes de produção na plataforma –	
1550m	112
Tabela 30 – Configuração do sistema de produção com completação seca – 2300m	113
Tabela 31- Perfil de pressão em condições de fluxo, com completação seca – 2300m	115
Tabela 32 – Variação da temperatura ao longo do sistema de produção – 2300m	116
Tabela 33 – Configuração do sistema de produção com completação molhada –	
2300m	117
Tabela 34- Perfil de pressão em condições de fluxo, com completação molhada –	
2300m	118
Tabela 35 – Configuração do sistema de produção com completação molhada e	
máximo afastamento – 2300m	119
Tabela 36- Perfil de pressão em condições de fluxo, com completação molhada e	
máximo afastamento – 2300m	119
Tabela 37 – Variação da temperatura ao longo do sistema de produção – 2300m	121
Tabela 38 – Comparação da variação da temperatura ao longo do sistema - 2300m	121
Tabela 39 – Comparação das temperaturas e volumes de produção na plataforma –	
2300m	122
Tabela 40- Classificação de poços quanto ao afastamento	141
Tabela 41- Classificação de poços quanto à profundidade de água	142

Nomenclatura

B_{g}	Fator volume de formação do gás
Bo	Fator volume de formação do óleo
B _t	Fator volume de formação total
c_p	Calor específico do fluido no interior do tubo
c_{pg}	Calor específico do gás
c_{po}	Calor específico do óleo
d	Densidade
d	Diâmetro
$d_{G \ livre}$	Densidade relativa do gás livre
d_{gcs}	Densidade do gás nas condições "standard"
d_{Gd}	Densidade relativa do gás dissolvido
f	Fator de fricção
f_0	Fator de proporcionalidade do óleo
$f_{ m w}$	Fator de proporcionalidade da água
g	Constante gravitacional
gc	Fator de conversão de unidades
h	Coeficiente de transferência de calor por convecção
h _e	Coeficiente de transferência de calor por convecção no exterior do tubo
Hg	"Holdup" do gás
\mathbf{h}_{i}	Coeficiente de transferência de calor por convecção no interior do tubo
H_{L}	"Holdup" do líquido
IP	Índice de produtividade
k	Condutibilidade térmica
k _{eq}	Condutibilidade térmica equivalente
kg	Condutividade térmica do gás
ko	Condutividade térmica do óleo
L	Comprimento
m _{g std}	Massa do gás dissolvido no óleo, nas condições "standard"
mo	Massa do óleo na temperatura e pressão do reservatório
Mo	Peso molecular do óleo nas condições "standard"

m _{o std}	Massa do óleo nas condições de tanque ou "standard"
N_{Fr}	Número de Froude
Nu	Número de Nusselt
Р	Pressão
Patm	Pressão atmosférica
Pe	Pressão estática do reservatório
P_w, P_{wf}	Pressão de fluxo no fundo do poço
P_{b}	Pressão do ponto de bolha
P_{pc}	Pressão pseudo-crítica
\mathbf{P}_{pr}	Pressão pseudo-reduzida
Pr	Número de Prandtl
Q	Taxa de transferência de calor
q_{g}	Vazão de gás in-situ
$q_{\rm L}$	Vazão de líquido in-situ
Re	Número de Reynold
r _e	Raio externo da tubulação
\mathbf{r}_{i}	Raio interno da tubulação
R_s	Razão de solubilidade do gás no óleo
$R_{sb} \\$	Gás em solução à pressão do ponto de bolha
Т	Temperatura
T_{C}	Pressão crítica
T_{pc}	Temperatura pseudo-crítica
T_{pr}	Temperatura pseudo-reduzida
T_R	Temperatura de reservatório
U	Energia interna
U	Coeficiente global de transferência de calor
u _m	Velocidade da mistura
Vg	Velocidade real do gás
V _{gstd}	Volume do gás dissolvido nas condições "standard"
v_{L}	Velocidade real do líquido
v_{m}	Velocidade da mistura
Vo	Volume do óleo na temperatura e pressão do reservatório
V _{ostd}	Volume do óleo nas condições de tanque ou "standard"

$\mathbf{V}_{\mathbf{S}}$	Velocidade de escorregamento
\mathbf{v}_{sg}	Velocidade superficial do gás
$v_{sL} \\$	Velocidade superficial do líquido
W	Trabalho fornecido ao fluido por bombas, compressores etc
y _g	Fração molar do gás
Z	Profundidade
Ζ	Fator de compressibilidade do gás
А	Área total
3	Rugosidade
γαρι	Densidade API
λ_g	"Holdup" do gás sem escorregamento
$\lambda_{\rm L}$	"Holdup" do líquido sem escorregamento
μ	Viscosidade
μ_{G}	Viscosidade do gás
μ_{OS}	Viscosidade do óleo saturado
ρ	Massa específica
$ ho_b$	Densidade da formação
$\rho_{\rm f}$	Massa específica do fuido
ρ_{gstd}	Massa específica do gás dissolvido nas condições "standard"
ρ_{ns}	Massa específica da mistura, sem escorregamento das fases
ρ_{o}	Massa específica do óleo na temperatura e pressão do reservatório
ρ_{ostd}	Massa específica do óleo nas condições de tanque ou "standard"
σ_{L}	Tensão superficial do líquido
σ_{o}	Tensão superficial do óleo
σ_{ov}	Pressão de sobrecarga